Lifelong alpha-tocopherol supplementation increases the median life span of C57BL/6 mice in the cold but has only minor effects on oxidative damage.

نویسندگان

  • Colin Selman
  • Jane S McLaren
  • Claus Mayer
  • Jackie S Duncan
  • Andrew R Collins
  • Garry G Duthie
  • Paula Redman
  • John R Speakman
چکیده

The effects of dietary antioxidant supplementation on oxidative stress and life span are confused. We maintained C57BL/6 mice at 7 +/- 2 degrees C and supplemented their diet with alpha-tocopherol from 4 months of age. Supplementation significantly increased (p = 0.042) median life span by 15% (785 days, n = 44) relative to unsupplemented controls (682 days, n = 43) and also increased maximum life span (oldest 10%, p = 0.028). No sex or sex by treatment interaction effects were observed on life span, with treatment having no effect on resting or daily metabolic rate. Lymphocyte and hepatocyte oxidative DNA damage and hepatic lipid peroxidation were unaffected by supplementation, but hepatic oxidative DNA damage increased with age. Using a cDNA macroarray, genes associated with xenobiotic metabolism were significantly upregulated in the livers of female mice at 6 months of age (2 months supplementation). At 22 months of age (18 months supplementation) this response had largely abated, but various genes linked to the p21 signaling pathway were upregulated at this time. We suggest that alpha-tocopherol may initially be metabolized as a xenobiotic, potentially explaining why previous studies observe a life span extension generally when lifelong supplementation is initiated early in life. The absence of any significant effect on oxidative damage suggests that the life span extension observed was not mediated via any antioxidant properties of alpha-tocopherol. We propose that the life span extension observed following alpha-tocopherol supplementation may be mediated via upregulation of cytochrome p450 genes after 2 months of supplementation and/or upregulation of p21 signaling genes after 18 months of supplementation. However, these signaling pathways now require further investigation to establish their exact role in life span extension following alpha-tocopherol supplementation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lifelong -tocopherol Supplementation Increases the Median Life Span of C57BL/6 Mice in the Cold but Has Only Minor Effects on Oxidative Damage

The effects of dietary antioxidant supplementation on oxidative stress and life span are confused. We maintained C57BL/6 mice at 7 2°C and supplemented their diet with -tocopherol from 4 months of age. Supplementation significantly increased (p 0.042) median life span by 15% (785 days, n 44) relative to unsupplemented controls (682 days, n 43) and also increased maximum life span (oldest 10%, p...

متن کامل

Vitamin E supplementation and mammalian lifespan.

Vitamin E refers to a family of several compounds that possess a similar chemical structure comprising a chromanol ring with a 16-carbon side chain. The degree of saturation of the side chain, and positions and nature of methyl groups designate the compounds as tocopherols or tocotrienols. Vitamin E compounds have antioxidant properties due to a hydroxyl group on the chromanol ring. Recently, i...

متن کامل

Testing the Effects of dl-Alpha-Tocopherol Supplementation on Oxidative Damage, Total Antioxidant Protection and the Sex-Specific Responses of Reproductive Effort and Lifespan to Dietary Manipulation in Australian Field Crickets (Teleogryllus commodus)

The oxidative stress theory predicts that the accumulation of oxidative damage causes aging. More generally, oxidative damage could be a cost of reproduction that reduces survival. Both of these hypotheses have mixed empirical support. To better understand the life-history consequences of oxidative damage, we fed male and female Australian field crickets (Teleogryllus commodus) four diets diffe...

متن کامل

Life-long vitamin C supplementation in combination with cold exposure does not affect oxidative damage or lifespan in mice, but decreases expression of antioxidant protection genes.

Oxidative stress is suggested to be central to the ageing process, with endogenous antioxidant defence and repair mechanisms in place to minimize damage. Theoretically, supplementation with exogenous antioxidants might support the endogenous antioxidant system, thereby reducing oxidative damage, ageing-related functional decline and prolonging life- and health-span. Yet supplementation trials w...

متن کامل

Vitamin E at high doses improves survival, neurological performance, and brain mitochondrial function in aging male mice.

Male mice receiving vitamin E (5.0 g alpha-tocopherol acetate/kg of food) from 28 wk of age showed a 40% increased median life span, from 61 +/- 4 wk to 85 +/- 4 wk, and 17% increased maximal life span, whereas female mice equally supplemented exhibited only 14% increased median life span. The alpha-tocopherol content of brain and liver was 2.5-times and 7-times increased in male mice, respecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Rejuvenation research

دوره 11 1  شماره 

صفحات  -

تاریخ انتشار 2008